Incidence Of Endophytic Human Pathogens In Fresh Produce

Author(s): Ms. Vaishnavi Ansingkar, Dr. Nikhilesh Kulkarni

Corresponding Author:
Ms. Vaishnavi Ansingkar,
Research scholar, Microbiology Research Lab R. A. College, Civil lines Washim - India

Submitting Author:
Ms. Vaishnavi Ansingkar,
Research scholar, Microbiology Research Lab R. A. College, Civil lines Washim - India

Article ID: WMC001299

Article Type: Research articles

Submitted on: 08-Dec-2010, 12:28:56 PM GMT Published on: 10-Dec-2010, 07:38:14 PM GMT

Article URL: http://www.webmedcentral.com/article_view/1299

Subject Categories: MICROBIOLOGY

Keywords: Endophyte, Salmonella spp., Escherichia coli O157:H7, Fresh produce

How to cite the article: Ansingkar V, Kulkarni N. Incidences Of Endophytic Human Pathogens In Fresh Produce. WebmedCentral MICROBIOLOGY 2010;1(12):WMC001299

Source(s) of Funding:
none

Competing Interests:
Bacteriology
Incidences Of Endophytic Human Pathogens In Fresh Produce

Abstract

The frequency of documented outbreaks of human illness associated with consumption of raw fruits and vegetables has increased in recent years. In present study 10 different fresh produce were proceed for standard plate count to evaluate the existence of endophytic bacterial human pathogens. This study revealed that out of the tested samples 60% were found to be contaminated with *Salmonella* spp. While 50% were loaded with endophytic *Escherichia coli O157:H7*. Maximum contamination was observed in leafy vegetables like spinach and coriander. While in Carrot, onion and radish pathogens was not observed. The potential internalization of pathogens in fresh produce is a concern of food safety and enlighten the chances of epidemic outbreaks.

Key Words: Endophyte, *Salmonella* spp., *Escherichia coli O157:H7*, Fresh produce.

Introduction

The epidemiology of food borne diseases is rapidly changing. The proportion of food borne illness associated with fresh produce has increased over last decade. Factors influencing this raid occurrence include change in agronomic practices, dietary habitats etc.[1]. Vegetables and fruits are frequently identified as the potential source of infection. In farm to table production there are various possible points of contamination of salad vegetables and fruits with disease causing microbes viz. poor quality irrigation water, manure, handling by workers etc. [2]. Regardless the source of contamination in field, the pathogens finds a way to survive and reproduce on the surface of fresh produce and even worse, inside the plant tissues and exist as an endophyte. They find safe environment to survive and cannot be washed off or killed by disinfectants. Therefore, in an effort to address this concern, the present work has been carried out to evaluate the microbiological quality of vegetables with special reference to endophytic bacterial pathogens viz. *Salmonella* spp. and *Escherichia coli O157:H7*.

Methods

The vegetables viz. brinjal, carrot, cauliflower, chili, coriander, lady finger, onion, radish, ridge gourd and spinach were taken as sample vegetables and proceed for surface sterilization, which was carried out using 70% alcohol and 5°C chilled water [3]. These surface sterilized produce samples were chopped aseptically into small pieces and washed with sterile distilled water. This wash water was further used to evaluate the existence of endophytic bacterial pathogens.

Enumeration of endophytic *salmonella* spp. and *Escherichia coli O157:H7* was carried out adopting standard plate count method using selective media viz. Bismuth sulphite agar and sorbitol Macconkey agar respectively. The colonies developed on the media were detected by examining the colony, morphological and biochemical characters [4].

Results and Discussion

The frequency of documented outbreaks of human illness associated with consumption of raw fruits and vegetables [5] has increased in recent years. Therefore the target commodities selected for this research include the produce items which are mostly consumed raw or in minimally processed form.

In the present investigation, endophytic bacterial pathogens viz. *salmonella* spp. and *Escherichia coli O157:H7* were found to be present in different vegetable samples as shown in (illustration1, 2). Bacterial attachment and infiltration do occur and are facilitated by stomata, lenticels, broken trichomes and bruises and cracks in the skin surface of fruits and vegetables [6, 7].

In case of radish, carrot and onion our results are in accordance with Natvig et al.,[8] and Islam et al.,[9] who showed that no pathogens detected by enrichment on radish and carrot at harvest whereas Auty et al.,[10] showed internalization of the *Escherichia coli O157:H7* in carrots where pathogen cells were found mainly at the cell junctions and in
intracellular spaces up to 50µm.

In this study, other produce samples viz. brinjal, cauliflower, chilli, lady finger and ridge gourd were found to be contaminated with endophytic human pathogens. The leafy vegetables like coriander and spinach were found to be heavily loaded with pathogens. Franz et al., [11] also found significant population of both S. enterica serovar typhimurium and Escherichia coli O157:H7 in sterilized leaf samples from plants grown in contaminated soil. The common site of entry of conjectured to be penetration at cracks in seed coat [12] or invasion at lateral root junction in seedling [13, 14, 15]. Exudation of nutrients at these entry sites is hypothesized to act as the trigger for mobilization of pathogens to these sites [13 14, 16] although adhesive characteristics and colonization ability [14] also factor into their proliferation near these sites. Subsequent entry into the tissue is appearing to be depend on the type of the plant [17].

The present study showed that out of 10 tested produce samples 60% and 50% were found to be contaminated with Salmonella spp. and Escherichia coli O157:H7 respectively. Thus the potential internalization of pathogens in fresh produce is a concern of food safety.

Conclusion

The study revealed the ability of enteropathogen to survive as an endophyte. This may possibly bring the mass contamination of vegetables produce with human enteropathogens and hence enlight the chances of epidemic outbreaks especially in the areas having the unhygienic cultivation system. Hence it is needed to prevent or minimize the contact of human pathogens during the cultivation and processing of fresh produce, so as to avoid it as an occultant source of human infection.

Acknowledgement

The authors are grateful to Rajasthan education society, R. A. college Washim for providing lab facilities and encouragement during the study period.

Source funding

None

References

14. Dong Y, Iniguez AL, Trippllet EW. Quantitative assessment of the host range and strain specificity of
17. Solomon EB, Matthews KR. Use of fluorescent microspheres as a tool to investigate bacterial interactions with growing plants. J. Food Prot. (2005); 68:870-873.
Illustrations

Illustration 1

Tables

Illustration 1

Presence of endophytic *Salmonella* spp. and *Escherichia coli* O157:H7 in fresh produce

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Name of fresh produce</th>
<th>Endophytic Salmonella Spp.</th>
<th>Endophytic Escherichia coli O157:H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brinjal</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>2</td>
<td>Carrot</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>3</td>
<td>Cauliflower</td>
<td>Absent</td>
<td>Present</td>
</tr>
<tr>
<td>4</td>
<td>Chili</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>5</td>
<td>Coriander</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>6</td>
<td>Lady finger</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>7</td>
<td>Onion</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>8</td>
<td>Radish</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>9</td>
<td>Ridge gourd</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>10</td>
<td>Spinach</td>
<td>Present</td>
<td>Present</td>
</tr>
</tbody>
</table>
Population density of endophytic *Salmonella* spp. and *Escherichia coli* O157:H7 in fresh produce

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Name of fresh produce</th>
<th>Endophytic Salmonella Spp. $(\times 10^2$CFU/mL)</th>
<th>Endophytic Escherichia coli O157:H7 $(\times 10^2$CFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brinjal</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Carrot</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Cauliflower</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Chili</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Coriander</td>
<td>689</td>
<td>452</td>
</tr>
<tr>
<td>6</td>
<td>Lady finger</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Onion</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Radish</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Ridge gourd</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Spinach</td>
<td>549</td>
<td>476</td>
</tr>
</tbody>
</table>

Abrevations: CFU: Colony forming units
Disclaimer

This article has been downloaded from WebmedCentral. With our unique author driven post publication peer review, contents posted on this web portal do not undergo any prepublication peer or editorial review. It is completely the responsibility of the authors to ensure not only scientific and ethical standards of the manuscript but also its grammatical accuracy. Authors must ensure that they obtain all the necessary permissions before submitting any information that requires obtaining a consent or approval from a third party. Authors should also ensure not to submit any information which they do not have the copyright of or of which they have transferred the copyrights to a third party.

Contents on WebmedCentral are purely for biomedical researchers and scientists. They are not meant to cater to the needs of an individual patient. The web portal or any content(s) therein is neither designed to support, nor replace, the relationship that exists between a patient/site visitor and his/her physician. Your use of the WebmedCentral site and its contents is entirely at your own risk. We do not take any responsibility for any harm that you may suffer or inflict on a third person by following the contents of this website.