A New PCR-RFLP Method for Diagnosing PNPLA3 rs738409 Polymorphism

Corresponding Author:
Dr. Atanu K Dutta,
Demonstrator, Department of Biochemistry, IPGMER, Kolkata, 244, AJC Bose Road, Kolkata-20, 700020 - India

Submitting Author:
Dr. Atanu K Dutta,
Demonstrator, Department of Biochemistry, IPGMER, Kolkata, 244, AJC Bose Road, Kolkata-20, 700020 - India

Article ID: WMC002401
Article Type: Research Protocol
Submitted on: 01-Nov-2011, 12:31:07 PM GMT Published on: 02-Nov-2011, 05:42:47 PM GMT
Article URL: http://www.webmedcentral.com/article_view/2401
Subject Categories: GENETICS
Keywords: PNPLA3, rs738409, Adiponutrin, PCR-RFLP
How to cite the article: Dutta A K. A New PCR-RFLP Method for Diagnosing PNPLA3 rs738409 Polymorphism. WebmedCentral GENETICS 2011;2(11):WMC002401
Source(s) of Funding: Indian Council of Medical Research
Competing Interests: None
Additional Files:
supplementary figure
Supplementary figure 1
A New PCR-RFLP Method for Diagnosing PNPLA3 rs738409 Polymorphism

Author(s): Dutta A K

Summary

Background:
PNPLA3 rs738409 (C10109G) polymorphism has been identified as a predisposing factor for nonalcoholic fatty liver disease, fibrosis, alcoholic cirrhosis and elevation of serum alanine transaminase in the human. However, no simple method for its assay is available. Hence, this research work was undertaken to develop PCR-RFLP method for the assay of PNPLA3 rs738409.

Methods:
PCR primers were designed using NCBI primer Blast and restriction endonuclease was identified using NEB Cutter 2 software. PCR-RFLP based genotyping was confirmed by sequencing both strands of PCR amplicons of a normal homozygote, a heterozygote and a mutant homozygote.

Results:
Amplification of genomic DNA with specific primers demonstrated 333 bp fragment. PCR-RFLP of DNA from a normal homozygote demonstrated 200 and 133 bp fragments, of a heterozygote 333, 200 and 133 bp fragments and of a mutant homozygote 333 bp fragment. Sequencing of DNA from a normal homozygote, a heterozygote and a mutant homozygote demonstrated C, C/G and G with sense primer and G, C/G and C with anti sense primer, respectively.

Conclusion:
A simple PCR-RFLP method for the assay of PNPLA3 rs738409 has been developed and its validity confirmed by DNA sequencing. This shall facilitate genotyping of PNPLA3 rs738409.

Introduction

Homo sapiens PNPLA3 is located at chromosome 22q13.31. It is 23,830 bp long and contains 9 exons. It is transcribed in to 2,805 nt long mRNA which is translated in to patatin like phospholipase domain containing 3 or adiponutrin of 481 amino acid residues with a molecular weight of 52.86 kDa (Baulande S et al, 2001). The membrane bound multifunctional protein present in adipocytes and hepatocytes demonstrates various enzyme activities (EC 3.1.1.3) like triglyceride hydrolase, calcium independent phospholipase A2 ? and acylglycerol O-acyltransferase, thus having both lipolytic and lipogenic activities (Jenkins et al, 2004). A genome wide association study demonstrated the association of PNPLA3 genetic polymorphism with nonalcoholic fatty liver disease in Hispanics, European Americans and African Americans (Romeo et al, 2008). SNP responsible for this was rs738409 (PNPLA3, C10109G). This transversion in exon-3 causes a nonsynonymous change from isoleucine to methionine at codon 148 in the catalytic domain. This change decreases the binding affinity of triglycerides at the active site, hence attenuating its lipolytic activity (He et al, 2010). Thus mutant homozygotes (PNPLA3, G10109G) are predisposed to accumulation of fat in the liver. Meta analysis of the 16 studies reported between 2008 and 2011 has established a strong association of this polymorphism with nonalcoholic fatty liver disease in Hispanics, Asians, African Americans and Caucasians (Sookian et al, 2011). Mutant homozygotes (PNPLA3, G10109G) also demonstrated increased serum alanine transferase activity in different ethnic groups in this meta analysis. This polymorphism is also associated with alcoholic cirrhosis in Mestizos (Tian et al, 2010) and Germans (Stickel et al, 2011), steatosis in chronic hepatitis C Italian patients (Valenti et al, 2011) and fibrosis in Germans (Krawczyk et al, 2011). Most studies on genotyping for PNPLA3 rs738409 have employed TaqMan chemistry (Valenti et al, 2010) or microarrays (Tian et al, 2010).
SNP rs738408 is located at 10112 and causes C to T transition, thereby changing codon CCC to CCT. This does not change proline at position 149. BtsCl recognition site is from 10104 to 10110 and it cleaves sense strand between 10105 and 10106 and anti sense strand between 10103 and 10104, thus leaving 3'-TT and 3'-AA overhangs on the sense and anti sense strands, respectively. Thus the presence of SNP rs 738408 did not interfere in the assay of SNP rs738409. The latter is present in the recognition site of BtsCl and thus results in the loss of restriction site for BtsCl in the mutant allele. There is no other known polymorphism in the recognition sequence of BtsCl. Hence the loss or gain of BtsCl site was solely due to rs738409 polymorphism. The sequence of sense primer was 5'- TGGGCCTGAAGTCCGAGGGT-3' (9906 to 9925, 20 bp) and that of anti sense primer was 5'- CCAGCACCATGTCCTGCGA-3' (10238 to 10219, 20 bp). PCR mixture consisted of 1X PCR buffer (Tris-HCl 10 mM, KCl 50 mM, MgCl2 2 mM), 0.2 mM each dNTP, 1 ?M each primer, 1 ?g genomic DNA and 1.5 U Taq DNA polymerase in a total volume of 50 ?L (Sambrook et al, 2001). Initial denaturation was performed at 94°C for 2 min. Subsequent cycles, each consisting of denaturation at 940°C for 30 sec, annealing at 66°C for 30 sec and synthesis at 72°C for 30 sec was carried out. Final synthesis was carried out at 72°C for 5 min. PCR was carried out in Mastercycler ep (Eppendorf AG, Germany) thermocycler for 35 cycles. PCR product was obtained which was digested with 4U of BtsCl at 50°C for 4 hr in 15 ?L reaction mixture containing 10 ?L PCR product and 1X NEBuffer 4. Digestion was stopped by incubating at 0°C. Digested PCR product was electrophoresed in 2% agarose gel and was visualized using Alphaimager HP (Alpha Innotech, USA).

Result and discussion

As predicted from the designed primers, an amplicon of 333 bp was obtained on the amplification of genomic DNA of a healthy control (Figure 1, UC). DNA amplified and cleaved with BtsCl from a normal homozygote (PNPLA3, C10109C) demonstrated 200 and 133 bp fragments (Figure 1, C/C). DNA amplified and cleaved with BtsCl from a heterozygote (PNPLA3, C10109G) demonstrated 333, 200 and 133 bp fragments (Figure 1, C/G). DNA amplified and cleaved with BtsCl from a mutant homozygote (PNPLA3, G10109G) demonstrated 333 fragment (Figure 1, G/G). The observed pattern of restriction fragment analysis exactly matched the predicted pattern based on the knowledge of DNA sequence of the amplicon, presence of SNP rs738409 as well as the recognition sequence of BtsCl. Thus a simple PCR-RFLP based assay for PNPLA3 rs738409 has been developed. To elevate any doubt on the validity of PCR-RFLP method developed in this study, both strands of DNA isolated and amplified from a normal homozygote, a heterozygote and a mutant homozygote were sequenced using sense and anti sense primers in 3130xl DNA sequencer (16 capillaries), Applied Biosystems, USA. Sequence of DNA isolated from a normal homozygote using sense primer demonstrated C at 10109 (See Supplemental data Figure 1) and using anti sense strand demonstrated G at 10109. Expectedly sequence of DNA isolated from a heterozygote using sense as well as anti sense primer demonstrated both C and G at 10109. Theoretically C to G mutation shall reverse the sequence at 10109 resulting G in sense strand and C in anti sense strand. This was exactly observed on sequencing DNA from a mutant homozygote using sense and anti sense primer (See Supplemental data Figure 1). DNA sequencing of both strands from a normal homozygote, a heterozygote and a mutant homozygote clearly validated the PCR-RFLP method developed for the assay of PNPLA3 rs738409. This study was in accordance with Helsinki declaration of clinical studies involving human subjects. The study was approved by the Institute Ethics Committee of PGIMER, Chandigarh.

Acknowledgement

We thank Professor Vijay K. Chaudhary, Department of Biochemistry, University of Delhi South Campus, New Delhi for DNA sequencing.

Bibliography

4. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson

WebmedCentral > Research Protocol

Disclaimer

This article has been downloaded from WebmedCentral. With our unique author driven post publication peer review, contents posted on this web portal do not undergo any prepublication peer or editorial review. It is completely the responsibility of the authors to ensure not only scientific and ethical standards of the manuscript but also its grammatical accuracy. Authors must ensure that they obtain all the necessary permissions before submitting any information that requires obtaining a consent or approval from a third party. Authors should also ensure not to submit any information which they do not have the copyright of or of which they have transferred the copyrights to a third party.

Contents on WebmedCentral are purely for biomedical researchers and scientists. They are not meant to cater to the needs of an individual patient. The web portal or any content(s) therein is neither designed to support, nor replace, the relationship that exists between a patient/site visitor and his/her physician. Your use of the WebmedCentral site and its contents is entirely at your own risk. We do not take any responsibility for any harm that you may suffer or inflict on a third person by following the contents of this website.