Carhart's Notch Its Implications

Corresponding Author:
Dr. Balasubramanian Thiagarajan,
Professor, Department of otolaryngology, Stanley Medical College, Chennai Tamilnadu, sreemagal, 20 I street, officers colony, rajaram metha nagar , 600029 - India

Submitting Author:
Journal Admin ENT Scholar

Article ID: WMC003273
Article Type: Review articles
Article URL: http://www.webmedcentral.com/article_view/3273
Subject Categories: OTORHINOLARYNGOLOGY
Keywords: Carhart's notch, Implication, Pure tone audiogram, Otosclerosis, Otology, Otolaryngology
How to cite the article: Thiagarajan B, Arjunan K. Carhart's Notch Its Implications . WebmedCentral:ENT Scholar 2012;3(4):WMC003273
Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Source(s) of Funding:
This article did not receive any funding from any source.

Competing Interests:
Authors have nothing to declare by way of competing interest.

ENT Scholar is an associate journal of Webmedcentral. We at Webmedcentral believe in open and transparent peer review using post publication peer review method. However, this article has been published using traditional pre publication peer review.
Carhart's Notch Its Implications

Author(s): Thiagarajan B, Arjunan K

Abstract

Carhart's notch is classically seen as a dip centered around 2 kHz range of bone conduction curve audiometry. This feature is seen in patients with otosclerosis. This article attempts to discuss why this dip is caused in the bone conduction audiometry curve in these patients.

Introduction

This is seen in bone conduction audiograms of patients with otosclerosis [1]. This is a dip at 2000 Hz in the bone conduction audiograms of these patients. Some authors consider this to be an artifact. After stapes surgery there is demonstrable over closure of air bone gap. There is also effective improvement in the patient’s level of hearing at 2 KHz frequency levels.

Review

Audiogram in air conduction shows a decrease in air conduction at all frequencies. Carhart's notch [2] is actually a decrease in bone conduction of 10-15 dB seen around 2 kHz frequency. Bone conduction actually means sensorineural reserve. After successful stapes surgery the carhart's notch disappears when the conductive hearing improves. This fact shows that carhart's notch in no way represents sensorineural reserve of a patient. It is hence considered to be an artifact due to stapes fixation. This phenomenon was first described by Raymond Carhart in 1950. He attributed this phenomenon to stapes fixation. According to Tondroff carhart's notch is not a true indication of cochlear reserve since it could be corrected by successful stapes surgery.

The frequency of resonance of middle ear has been identified as 800 – 1200 Hz [3]. Considering this to be a fact then one vital question about carhart's notch remain unanswered “Why is the dip seen at 2 kHz instead of 1200 Hz?” The answer to this question was provided by Zwislocki in 1957. He was able to demonstrate clearly that the primary resonance frequency for ossicular chain bone conduction falls between 1600 – 1700 Hz [4].

Homma's study [5]: In his classic study Homma published his findings which suggests that middle ear ossicle resonances for air and bone conduction are slightly different. Measurements of ossicle resonances demonstrated that they show two modes of vibration.

Mode 1: This mode is the primary mode for air conduction. The peak occurs around 1200 Hz. This vibration is caused by hinging movement of ossicles due to air conduction stimulus at the level of umbo of ear drum.

Mode 2: This mode has a peak around 1700 Hz. This is caused by pivoting motion of malleus and incus complex. This mode is less robust when compared to that of Mode 1 but is dominant one during bone conduction of sound. Decreased mobility of ossicles in this mode caused due to otosclerosis is considered to be the cause for carhart's notch.

Tondroff hypothesis [6]: When skull is vibrated by bone conduction, sound is transferred to cochlea via three routes. i.e.
1. By direct vibration of skull
2. By vibration of ossicular chain which is suspended within the skull
3. By transmission via external auditory canal (normal route)
In conductive hearing loss routes 2 and 3 are affected, but can be regained following successful stapes surgery. Hence bone conduction thresholds improve around 2 KHz frequency range.

References

1. http://books.google.co.in/books?id=JO7xvVft4YoC&lpg=PP1&pg=PP1#v=onepage&q&f=false
Illustrations

Illustration 1

Figure showing pure tone audiometry curve with Carahrt's notch.
Disclaimer

This article has been downloaded from ENT Scholar an associated journal of WebmedCentral. Authors must ensure that they obtain all the necessary permissions before submitting any information that requires obtaining a consent or approval from a third party. Authors should also ensure not to submit any information which they do not have the copyright of or of which they have transferred the copyrights to a third party. Contents on ENT Scholar are purely for biomedical researchers and scientists. They are not meant to cater to the needs of an individual patient. The web portal or any content(s) therein is neither designed to support, nor replace, the relationship that exists between a patient/site visitor and his/her physician. Your use of the ENT Scholar site and its contents is entirely at your own risk. We do not take any responsibility for any harm that you may suffer or inflict on a third person by following the contents of this website.