Sneeze-vector And Sexually Transmitted Vaccines

Corresponding Author:
Dr. Marc Egeth,
Ph.D., Anesthesiology and Critical Care, University of Pennsylvania - United States of America

Submitting Author:
Dr. Marc Egeth,
Ph.D., Anesthesiology and Critical Care, University of Pennsylvania - United States of America

Article ID: WMC00899
Article Type: Thesis
Submitted on: 05-Oct-2010, 02:32:41 PM GMT Published on: 05-Oct-2010, 09:54:30 PM GMT
Article URL: http://www.webmedcentral.com/article_view/899
Subject Categories: INFECTIOUS DISEASES
Keywords: Infection, Infectious, Vaccine, Transmission
How to cite the article: Egeth M. Sneeze-vector And Sexually Transmitted Vaccines. WebmedCentral INFECTIOUS DISEASES 2010;1(10):WMC00899
Source(s) of Funding:
Thanks to NIH 5T32GM007612-33.
Hypothesis

Intra-nasal vaccine delivery (e.g. Flumist) has become a popular alternative to injections: just as naturally occurring viruses can enter the body through the respiratory system, so can artificially attenuated or inactivated viruses, or vaccines. The ability of vaccine strains to act effectively after entering the body through the mouth or nose raises the possibility that vaccines could also spread, like natural viruses, from person to person. If so, then we have potential new mechanisms for inoculating populations: sneeze-vector vaccines. A sexually transmitted vaccine would represent an alternate transmission pathway. For example, retransmittable vaccines could be given to individuals who come to clinics with respiratory and sexually transmittable viruses. The effect would be to introduce the vaccine to social networks of people who would otherwise have received virus.

Developing optimal re-transmittable vaccines would require overcoming various engineering problems. However, a person might already, in principle, be able to inoculate another by sneezing after receiving Flumist, simply through mechanical transmission. In addition, vaccinia, the naturally occurring virus used as a smallpox vaccine, may already be able to cause several generations of accidental contagious inoculations [1]. To optimize the process of deliberate vaccine retransmission, vaccine strains might be crafted, to the extent possible, to be virile (alive and reproducing) but not virulent (disease-causing). Overall, the cost-benefit ratio for broadcasted immunization must be favorable with respect to infecting non-consenting and immunocompromised individuals with even a weakened version of a virus.

Bioengineering, epidemiological, and sociological problems of re-transmittable vaccines might or might not be able to be overcome. But, in cases where a harmful virus threatens a large population of individuals who have poor access to vaccines, the idea of inoculating a few individuals with a vaccine that can spread like a virus might be nothing to sneeze at.

Acknowledgement(s)

Thanks to Miriam Steinberg-Egeth for editing, reading, and thinking about this paper.

References

Disclaimer

This article has been downloaded from WebmedCentral. With our unique author driven post publication peer review, contents posted on this web portal do not undergo any prepublication peer or editorial review. It is completely the responsibility of the authors to ensure not only scientific and ethical standards of the manuscript but also its grammatical accuracy. Authors must ensure that they obtain all the necessary permissions before submitting any information that requires obtaining a consent or approval from a third party. Authors should also ensure not to submit any information which they do not have the copyright of or of which they have transferred the copyrights to a third party.

Contents on WebmedCentral are purely for biomedical researchers and scientists. They are not meant to cater to the needs of an individual patient. The web portal or any content(s) therein is neither designed to support, nor replace, the relationship that exists between a patient/site visitor and his/her physician. Your use of the WebmedCentral site and its contents is entirely at your own risk. We do not take any responsibility for any harm that you may suffer or inflict on a third person by following the contents of this website.