Scaphoid Fractures- Anatomy And Diagnosis: A Systemic Review Of Literature

Corresponding Author:
Dr. Dharm Meena,
junior resident, orthopaedics, PGIMER, E 402, MDH,PGIMER, CHANDIGARH, 160012 - India

Submitting Author:
Dr. Dharm S Meena,
Junior Resident, Orthopaedics, PGIMER, E 402, MDH, PGIMER, Chandigarh, 160012 - India

Article ID: WMC001268
Article Type: Review articles
Submitted on: 02-Dec-2010, 08:47:28 AM GMT Published on: 03-Dec-2010, 05:41:26 PM GMT
Article URL: http://www.webmedcentral.com/article_view/1268
Subject Categories: ORTHOPAEDICS
Keywords: scaphoid, vascularity, fracture, proximal pole, MRI, diagnosis

How to cite the article: Aggarwal S, Meena D, Bali K, Kumar V. Scaphoid Fractures- Anatomy And Diagnosis: A Systemic Review Of Literature. WebmedCentral ORTHOPAEDICS 2010;1(12):WMC001268
Scaphoid Fractures- Anatomy And Diagnosis: A Systemic Review Of Literature

Author(s): Aggarwal S, Meena D, Bali K, Kumar V

Abstract

Scaphoid fractures are commonly seen in orthopedic practice. An organized and thoughtful approach to diagnosis and treatment can facilitate good outcomes. Anatomical knowledge of the scaphoid is important both for the treatment and prognosis. The blood supply to scaphoid is from distal to proximal pole. Clinical suspicion is of paramount importance. X-ray is most important to confirm the diagnosis with aids of MRI and bone scan.

Review

Related anatomy and blood supply

Scaphoid fractures constitute 60-70% of all carpal bone fractures. Due to the importance of scaphoid in wrist mechanics and because of the frequency of the fracture in young adult males, it has an economic as well as physical significance. Scaphoid fractures are uncommon in children because the physis of distal radius fails first. It is also known as carpal Navicular. It is an irregular shaped bone, more resembling a twisted peanut than the boat for which it is named. Scaphoid represents floor of the anatomic snuff box. Its articular cartilage covers 80% of the scaphoid surface therefore only narrow area of its neck and smaller distal portion are accessible to blood vessels. Distally, it articulates with the trapezium and trapezoid in a gliding motion, the articulation with the trapezium forms a base for independent movement of the thumb. On the ulnar side, it articulates distally with the capitate, and proximally with the lunate in a rotary motion. Proximally, its large, biconvex surface allows articulation with the radius.

Its major blood supply comes from the scaphoid branches of the radial artery entering the dorsal ridge at or just distal to waist area and supplying 70-80% of the bone including the entire proximal pole in a retrograde fashion. Second group of vessels that arise from palmar and superficial palmar branches of radial artery enter the distal tubercle, it perfuses distal 20-30% of bone, including tuberosity. The blood supply to the scaphoid can be divided into extraosseous and intraosseous sources. The extraosseous blood supply is primarily derived from a branch of the radial artery, the artery to the distal ridge of the scaphoid. The branches of this vessel enter the scaphoid through a foramen at the dorsal ridge at the level of the waist. These vessels then run proximally and palmarly within the medullary chamber, forming the intraosseous supply to the proximal pole. Since vascularity of the proximal pole is limited and dependent on intraosseous flow, acute proximal pole fractures have a potentially prolonged healing period, averaging 3 to 6 months and there is higher incidence of non-union. There are no anastomoses between the dorsal and palmar vessels. Vessels enter through dorsal ridge in 79%, distal to waist in 14% and proximal to waist in 7% population. Fractures across scaphoid may destroy blood supply to its proximal part.

Biomechanics

Mechanically scaphoid acts as a link between the proximal and distal carpal rows. Scaphoid spans both carpal rows and therefore has less mobility than other carpal bones. Scaphoid carries the compressive loads from the hand across the wrist to the distal forearm. Scaphoid flexes with wrist flexion and extends with wrist extension. It also flexes during radial deviation and extends during ulnar deviation. These factors make immobilization of scaphoid fractures difficult especially when there is displacement. Scaphoid is a principal bony block to dorsiflexion of hand and wrist, and is susceptible to fracture during fall on outstretched hand.

Scaphoid fracture and mechanism of injury

Incidence of scaphoid fractures estimated to be around 15% of all wrist injuries. It is more common in males. Highest incidence occurs between 20-30 year age group. Out of total fractures, 70-80% occurs at waist. Relative Incidence of Carpal Bone Fractures is Scaphoid 68.2%, Triquetrum 18.3%, Trapezium 4.3%, Lunate 3.9%, Capitate 1.9%, Hamate 1.7%, Pisiform 1.3%, Trapezoid 0.4%.

There are two different mechanisms involved in the fracture:

1. Compression injury : usually results in non displaced fracture
2. Hyperextension bending injury : usually results in displaced fracture
Diagnosis

A strong index of suspicion is the key to early diagnosis. The diagnosis should be based on:

1. History
2. Clinical examination
3. Radiographic evaluation

1. History
It usually occurs after a fall on an outstretched hand, athletic injury, or MVA. It usually happens in young adult men. Patient will give history of pain at the radial side of the wrist. Associated injuries may or may not be present.

2. Clinical examination
Clinically one should demonstrate tenderness in the anatomic snuff box. There is also tenderness to palpation over scaphoid tuberosity and proximal pole just distal to Lister's tubercle. Tenderness with axial compression of thumb toward the snuff box is also considered diagnostic test. Tenderness in the anatomical snuffbox is often described as a classical sign of scaphoid fracture with a reported sensitivity of 90% but a low specificity of 40%. The diagnosis of a scaphoid fracture can sometimes be difficult to establish, as patients may have normal radiographs early in their clinical course. Most patients have limited range of motion and pain at the end arc of motion, especially with flexion and radial deviation. Reduced grip strength may be noted. However, it is important to note that not all patients have pain over the scaphoid even with a well-defined fracture seen on radiographs. Overall, sensitivity is quite high for the clinical examination, although specificity approaches only 74%–80%.

3. Radiographic Evaluation
This is considered as the best method for determining the presence of a fracture. Acute scaphoid fractures can often be missed on initial plain radiographs, with reported sensitivities ranging from 84% to 98%. Many different views have been recommended. The useful initial views are: PA, lateral, scaphoid view (PA with ulnar deviation), Motion views of the wrist (flexion-extension-radial & ulnar deviation) may demonstrate fracture displacement. If a diagnosis still can’t be confirmed with confidence on routine films, further oblique views can be taken. If certainty still exists after all these maneuvers, the patient should be placed in a cast for 2 to 4 weeks and the clinical & radiographic evaluation repeated. If the second radiographic examination is still equivocal, a technetium bone scan, polytomography, CT or MRI of the wrist is recommended. The bone scan is the most sensitive but the least specific of these modalities, thus if the bone scan is negative, a scaphoid fracture is ruled out. Although this remains an accepted treatment option, it may result in unnecessary immobilization, with adverse effects upon return to work and the need for repeat radiographs, clinical examinations, and splint or cast changes. Alternative imaging techniques may be useful for diagnosing a fracture, and magnetic resonance imaging (MRI) is superior to repeat radiographs for detecting an occult scaphoid fracture.

Differential diagnosis
• It is the same as of radial sided wrist pain
• Sapholunate instability
• Radial styloid fracture
• Trapezium fracture
• Lunate dislocation or fx
• Rupture of FCR tendon

Authors Contribution(s)
All authors have equally contributed.

References

Disclaimer

This article has been downloaded from WebmedCentral. With our unique author driven post publication peer review, contents posted on this web portal do not undergo any prepublication peer or editorial review. It is completely the responsibility of the authors to ensure not only scientific and ethical standards of the manuscript but also its grammatical accuracy. Authors must ensure that they obtain all the necessary permissions before submitting any information that requires obtaining a consent or approval from a third party. Authors should also ensure not to submit any information which they do not have the copyright of or of which they have transferred the copyrights to a third party.

Contents on WebmedCentral are purely for biomedical researchers and scientists. They are not meant to cater to the needs of an individual patient. The web portal or any content(s) therein is neither designed to support, nor replace, the relationship that exists between a patient/site visitor and his/her physician. Your use of the WebmedCentral site and its contents is entirely at your own risk. We do not take any responsibility for any harm that you may suffer or inflict on a third person by following the contents of this website.